但如何让绿色植物在残酷的月球环境里生长,忍受从零下175摄氏度到零上120摄氏度巨大温差,忍受长达十几天的漫漫黑夜,以及微重力等环境?36平米的植物舱内,高亮度的红光照射在在翠绿的生菜、油麦菜、紫背天葵、苦菊4种可食用蔬菜上,30多岁的试乘员唐永康、米涛呼吸着蔬菜提供的氧气,每餐还亲手采摘30-50克新鲜蔬菜充饥,“这些蔬菜在进舱前已培养好,新鲜采摘后涂抹甜辣酱后美美地生吃,但两人根本吃不完36平米的蔬菜。”他们出仓后总结。
这一幕出现在去年中国航天员科研训练中心主持开展的2人30天B LSS集成技术试验成功后。经过近20年单项关键技术攻关,我国逐步拉近与国外的研究差距,建成了BLSS集成实验平台。
“试验突破了‘人-植物’氧气和二氧化碳交换动态平衡调控技术和微生物废水综合处理与循环利用等多项关键技术,大气、水和食物的闭合度分别达到100%,901%和10 .4%,并证明种植面积为13.5平方米的共生蔬菜能够提供1人的呼吸用氧,并能清除其呼出的二氧化碳,试验期间保持了良好的空气质量。”参与实验的中国航天员中心载人航天环控生保室主任郭双生撰文总结道。
郭双生在今年6月的《航天医学与医学工程》中介绍,中国航天员中心先后研制成三代空间站植物装置地面样机,并进行了充分的地面验证考核,正等待时机进行空间在轨验证。
各国科学家研究月球种植物的初始,都是在地面营建模拟月球环境的实验装置。俄罗斯建成了世界上***座用于研究BLSS的大型地基综合实验装置———B IO S系统,系统从藻类培养到增加植物生长舱,四年实验证明,氧气完全能自给自足。
其后连续十年的升级实验表明,63平方米的植物种植面积使系统在气体、水循环方面完全自给自足,并满足3名实验人员约70%的食物需求。
刘红透露,在宽阔的“月宫一号”,不仅种有蔬菜,还将有粮食和水果,满足实验人员的全部气体、水和食物的需要。
BLSS技术虽然经历了50余年的发展历程,但至今该技术仍停留在实验研究阶段,远未实现工程化应用。但美、德等国却进行了各种月球基地B LSS的概念设计:它建在月球南极常年光照的阿特肯盆地的山峰上,藏于月壤覆盖的地下或半地下,全封闭的系统中,低压接近1/2的地球海平面大气压,人和植物共同克服高真空、高辐射和陨石撞击,植物的生长保障着航天员长期封闭生存和自给自足。
这些即将承担大任的植物,需要满足一系列在狭小、密闭、微重力、超真空、强辐射的空间环境生存特点,还要能发挥食物生产、大气再生与净化、水分再生与净化和废物处理与再生等一种或几种作用。
植物是整个生保系统的核心部分,筛选的植物合适与否在很大程度上决定着试验的成败。
那些体积小、培养技术简单、易于繁殖和移植,遗传性状稳定、生长快、周期短、产量高、可食部分比值高,抗病和抗逆性强的植物优先被挑选,科学家还注意到,主要作为食物的它们,要符合人们的饮食文化习惯,并能满足食谱的多样化,还要具备一些本国特点。
微生物领域的金针菇、平菇、酵母菌,藻类中的螺旋藻、小球藻等,还有研究中我国首次引入的水生蕨类植物红萍成为科学家选中的***批实验者。
更多资讯:植物工厂